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Synopsis 

Lee' showed that molecular transport in all isothermal membrane processes, based on dense 
layers, can be described with one single general equation, including only measurable conditions 
from outside of the membrane. Following arguments given by Paul' for homogeneous rubber 
membranes, Lee assumed the pressure everywhere inside the membrane to be equal to the feed 
side pressure. In this paper the question is stated whether this assumption always holds for very 
thin and/or nonhomogeneous membranes like asymmetric membranes made of semicrystalline 
polymers. A study based on less stringent assumptions of the pressure profile inside the mem- 
brane is performed. The results show that in most cases this pressure profile does not play a 
major role in the permeation process. 

INTRODUCTION 

Based on a general approach, Lee' shows that molecular transport in all 
isothermal membrane processes, based on dense layers, can be described with 
one single equation. 

In the considered processes, the driving force is a difference in pressure 
and/or mole fraction (called concentration by Lee) or activity outside of the 
membrane. Assuming thermodynamic equilibrium at  the membrane bound- 
aries and a constant pressure inside the membrane, the driving force causes a 
concentration gradient within the membrane, resulting in diffusive transport 
through the membrane. 

Taking into account the specific driving forces of the individual processes, 
the commonly used equations for these processes arise. Lee assumes a pressure 
inside the membrane to be constant and equal to the pressure of the upstream 
solution (feed or high pressure side). Thus the permeation of components is 
solely determined by the concentration gradient within the membrane. The 
question arises whether the assumption of constant pressure inside the mem- 
brane is always correct. 

For relatively thick, highly swollen, flat rubber membranes, Paul and 
Ebra-Lima3 proved that only a concentration gradient within the membrane 
was responsible for the transport of the permeating components. For isotropic 
hollow fibers Paul2 calculates that the pressure inside the membrane can have 
any predictable value, from even negative values up to a value above that of 
the feed pressure, depending on the fiber geometry and the side of the 
maximum pressure. 

For composite or asymmetric membranes the active skin is present on top of 
a relatively open, porous layer. The membrane hanging above a pore can be 
compared to a part of an internally pressurized hollow fiber, so that the 
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pressure inside the membrane may deviate from the feed or permeate pres- 
sure. The pressure distribution inside a nonisotropic membrane is unpre- 
dictable beforehand. For a semicrystalline polymer the crystallites can be of 
the order of magnitude of the active skin layer, so that forces due to the 
pressure difference and difference in swelling are not evenly distributed. 
Considering the magnitude of thickness of modern permeation membranes, 
the question of the pressure distribution inside a membrane probably will 
remain a theoretical one. Yet the question remains how a pressure profile, 
different from the one assumed by Paul’ and Lee,’ influences the permeation 
through polymeric membranes. 

In  experiments of Paul and Ebra-Lima3 the concentration in the membrane 
a t  the feed boundary determined directly after permeation was equal to the 
equilibrium concentration for the polymer immersed in the liquid. This was 
considered as a proof for the assumption that the pressure inside the mem- 
brane equals the feed side pressure. Other a ~ t h o r s ~ - ~  found concentrations a t  
the membrane boundary deviating upward or downward from the equilibrium 
concentration. The accuracy of the reported values for the concentrations is 
not very high, as can be seen from the scattering of the published data. For 
membranes having thicknesses comparable to the thickness of the skin of 
asymmetric or composite membranes, it must be considered impossible even to 
get an indication of the concentration as a function of the distance from the 
membrane boundary. Despite these uncertainties, the equations derived by 
Lee are applied with success in all mentioned membrane processes. 

Based on less stringent assumptions of the pressure profile inside the 
membrane, a study is performed here that shows that in most cases this pres- 
sure profile does not play a major role in the permeation process. The pressure 
profile should be taken into consideration in case of very high feed pressures 
or permeating components having large molar volumes. 

THE INFLUENCE OF THE PRESSURE PROFILE IN A DENSE 
MEMBRANE ON THE PERMEATION OF COMPONENTS 

For a flat membrane, in the stationary state the permeation of a component 
can be described with (Lee’) 

This equation holds for very “dilute” membrane system, in which the 
permeation of each component is independent of the permeation of the others. 
For very dilute solutions the concentration Ci is related to the mole fraction: 

where pi and Mj correspond to the solvent (here the membrane) for which 
xi - 1. It is assumed that no electrical field or temperature gradient is 
present. The chemical potential p c ( z )  of component i at  position z is then 
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written as 

P ( 2 ) -  
p l ( z )  = p y +  R T l n a , ( z )  + V,dP 

eel 

where a l ( z )  = y i ( x )  . x , ( z ) .  The activity coefficient yi within the membrane is 
assumed constant. 

For any profile for the concentration and the pressure inside the membrane, 
eqs. (1) and (2) give 

From this equation i t  follows that not only a concentration gradient, but also 
a pressure gradient result in a diffusive flow. The resulting flow is related to 
both gradients with the same diffusion coefficient as given in this equation. 

For the sake of readability Di is defined as 

For a constant pressure inside the membrane, eq. (3) simplifies to 

h i  4 
dz Dl 

(5) 

Thus in this case a linear concentration profile exists for constant Di, and the 
flux can be calculated using the equation derived by Lee. 

For a pressure not being constant inside the membrane, rearrangement of 
eq. (3) gives 

-4 
. x . =  - 

d3ci v, dP - + - . -  
dz R T  dz l Di 

Assuming the pressure P to be a function of the coordinate z only and v, 
independent of the concentration, this equation can be solved for x ,  yielding 

Xi(.) = 

for all z inside the membrane. 
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For z = 6, the thickness of the membrane, this equation is rearranged to 

Equilibrium a t  both membrane boundaries will be assumed, so that 

x T =  Kil*x{exp{-V,[P(0) -P , " ] /RT}  ( 9 4  

x t  = Ki2 . XZ exp{ - [ P( 6 )  - P,"]/RT} (9b) 

and 

where Kil and Ki2 are the solubility constants a t  the upstream and down- 
stream boundaries rap .  

Taking for reasons of simplicity Kil = Ki2 = K,, i.e., the activity coefficients 
in either the membrane or the adjacent phase taken to be independent of the 
concentration, eq. (8) is rewritten as 

It is emphasized that J ,  is not dependent on a pressure jump a t  one of the 
membrane boundaries. Only the pressure profile within the membrane is 
included in eq. (10). 

Equation (10) resembles very much the equation, derived by Lee. The ratio 
of values of J ,  calculated by the equation given by Lee and by eq. (10) is 

For three cases this ratio of fluxes is evaluated: first, for a constant pressure 
inside the membrane equal to the upstream pressure, second, for a linear 
pressure profile, ranging from the upstream pressure a t  the upstream side to 
the downstream pressure at  the downstream side, and, third, for a constant 
pressure inside the membrane, equal to the downstream pressure. This third 
case is not an extreme case, as indicated by Paul' for an internally pressurized 
hollow fiber with a small wall thickness. 

1. When P(z) = P: for all 0 I z I 6, the denominator reduces to 6 and 
equation (9) becomes identical to the one derived by Lee. 
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Fig. 1.  

2. For a linear pressure profile inside the membrane, decreasing from the 
upstream pressure to the downstream pressure, 

the ratio is evaluated to 

For low feed pressures, this ratio is almost equal to 1; however, for high 
pressures a significantly lower flux is calculated by eq. (10) than calculated 
by the equation of Lee, as illustrated in Figure 1 for the permeation of 
water. 

3. For a pressure inside the membrane equal to the downstream pressure, the 
ratio is evaluated to 

1 
(14) - J ,  [eq. (9)1 - 

J ,  (Lee) exp[ V,( P; - P;) /RT]  

The ratio follows the same trend as with the former case, but a higher 
deviation occurs, as illustrated in Figure 1. 

From Figure 1 it is clear that the deviation may be high for very high pressure 
difference over the membrane and low pressure levels inside the membrane. 
For permeating components having larger molar volumes, the curves remain 
the same, but are shifted to the left. From the figure it can be concluded that, 
for not too high feed pressure, the equation given by Lee can be used for all 
permeation through dense membranes, irrespective of the pressure profile 
inside the membrane. 
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DISCUSSION 

Theoretically, by direct comparison of fluxes resulting from pervaporation 
and reverse osmosis, one can conclude whether the internal pressure inside the 
membrane is or is not equal to the feed side pressure. If fluxes calculated with 
the equation derived by Lee' and with eq. (10) deviate, this will only be the 
case when a high pressure difference is applied over the membrane. In 
pervaporation, use of both equations results in the same flux value, as the 
pressure inside the membrane, if not equal to the feed side pressure, only 
plays a minor role. A comparison between fluxes from both modes of operation 
is carried out by Paul and Ebra-Lima3 and by Paul and Paciotti,' both based 
on experiments with flat rubber membranes. From these comparisons they 
concluded that the assumption of equal pressure inside the membrane and the 
feed side pressure is realistic. Duggal and Thompsong performed pervapora- 
tion and reverse osmosis experiments with homogeneous cellulose acetate 
membranes. Their pervaporation experiments were combined with reverse 
osmosis, applying pressure to the feed and vacuum to the permeate. Surpris- 
ingly, fluxes were found in these " pressurized" pervaporation experiments 
that  were about 30% lower than found for pervaporation with the feed only a t  
atmospheric pressure. This, however, cannot be explained by a pressure inside 
the membrane being lower than the feed pressure. 

From the latter result and taking into account that differences resulting 
from deviating pressures inside membranes become significant only at  very 
high pressures, it may be expected that a correct conclusion about the 
pressure profile inside a membrane will not result from membrane filtration 
experiments. 

APPENDIX: NOMENCLATURE 

a activity 
C concentration (kmol m-3) 
D diffusion coefficient (m2 s-l) 
D diffusion coefficient, defined by eq. (4) (kmol m-l s-l) 
J flux of component through membrane (kmol mp2)  
K solubility constant 
M molecular weight (kg kmol-l) 
P pressure (Pa) 
R gas-constant (8314) (J K-'  kmol-') 
T temperature (K) 
V partial molar volume (m3 kmol-') 
x mole fraction 
z coordinate (m) 
y activity coefficient 
6 membrane thickness (m) 
p specific density (kg mP3) 
p chemical potential (J kmol-') 

Subscripts 

i component 
1 upstream side (feed) 
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2 downstream side (permeate) 
ref reference 

Superscripts 

m membrane 
s solution outside membrane 
0 standard 
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